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where Nj, Vj, M 2 and Tj are the internal member forces resulting from the real loads. The

use of this method is illustrated in the following examples.

EXAMPLE 5.11 ] The cantilever beam in Figure E5.11 has a rectangular cross section and is subjected to a midspan
Cantilever Beam | 1oad P as shown. Neglect strain energy resulting from shear.
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FIGURE E5.11

(a) Determine the vertical deflection and rotation of the free end of the beam by the dummy load
method.

(b) Show that the same results are obtained by the dummy unit load method.

Solution | (a) The first step in the dummy load method is to apply a fictitious load F, and a fictitious moment
M 4 at point A as shown in Figure ES.11. Next, we write the moment expressions for the two intervals
of the beam. For interval A-B

Mug=My+F,z (@)
For interval B—C

My = MA+FA(E +§J+P7 (b)

Differentiation of Egs. (a) and (b) with respect to the fictitious force and moment yields, for interval A-B,
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To find the vertical deflection at point A, we substitute Egs. (a), (b), (c), and (e) into Eq. 5.17 and per-
form the integration:
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Since, in fact, the fictitious loads F, and M, do not exist, they are set to zero. Then Eq. (h) yields the
deflection of point A as

3
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To find the rotation of the section at A, we substitute Egs. (a), (b), (d), and (f) into Eq. 5.18 and per-
form the integration:
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Again, the fictitious loads F; and M, are set to zero. Then Eq. (k) yields the rotation of the section at A as
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(b) In the dummy unit load method, F,; and M, are set to unity. Then the internal moment M resulting
from the real force at B and the internal moments m” and m™ (see Egs. 5.19a and 5.19b) resulting
from the unit force and unit moment at A are, for interval A-B,

Myp =0 (m)
F
myp = 1.0(z) = z (n)
M
myp = 1.0 (o)
and for interval B—~C,
Myc = Pz ®)
F _ L _ L
mpe = 1.0[z+5] =Z+5 @
M
mpe = 1.0 )]

The deflection at point A is obtained by the substitution of Egs. (m), (n), (p), and (g) into Eq. 5.20a.
The result is [see Eq. (i)]
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The rotation of the section at A is obtained by the substitution of Egs. (m), (o), (p), and (r) into Eq.
5.20b. The result is (see Eq. 1)
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Thus, the equivalence of the dummy load approach with the dummy unit load approach is demon-
strated for this example.
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EXAMPLE 5.12
Pin-Connected
Truss

Solution

The pin-connected truss in Figure E5.12 is made of an aluminum alloy for which E = 72.0 GPa. The
magnitudes of the loads are P = 10 kN and Q = 5 kN. Members BC, CD, and DE each have cross-
sectional area of 900 mm?. The remaining members each have cross-sectional area of 150 mm?.
Determine the rotation of member BE caused by the loads P and Q.

M
7L

FIGURE E5.12

To determine the rotation of member BE by energy methods, a moment M must be acting on member BE.
Let M be an imaginary counterclockwise moment represented by a couple with equal and opposite forces
MJL(L = BE = 2500 mm) applied perpendicular to BE at points B and F as indicated in Figure E5.12.
Equations of equilibrium give the following values for the axial forces in the members of the structure:

4 5M ON 4p 5
= 2Py - — — -
Nap = 5(@+2P) 37 oM 3L
5 Npc
Ny~ =— + P), —_ =0
BC 3(Q ) i
N gp
N.. = SP_4M Nop _ _4
BE — =3 31" oM 3L
_ _ 4P 5M  Ncp 5
Nep =Noe ==F+31> i =3I

After the partial derivatives aNj /M have been taken, the magnitude of M in the N; is set to zero. The
values of N; and dN;/dM are then substituted into Eq. 5.18 to give

6
3 NjLioN; Nuglap ONap NpcLgc MNpe

FEA; M " EA,, oM ' EAge oM
NgpLgp dNgp +NBELBE Ngg

EA,, oM = EAg, oM

Neplep INep

FAg, oM

Opg =

+2

o, - 4(25,000)(2000)] 5 L 5(10,000)(2500) 4
BE ™ "3(72,000)(150) | 3(2500) | 3(72,000)(150) | 3(2500)

3(72,000)(900) {3(2500)
-0.00672 rad

_ 208X 10’000)(2000)[ > } = —0.004115 — 0.002058 — 0.000549

The negative sign for 05 indicates that the angle change is clockwise; that is, the angle change has a
sign opposite to that assumed for M.



EXAMPLE 5.13
Curved Beam
Loaded
Perpendicular to
Its Plane

Solution

EXAMPLE 5.14
Stiffness of a
Coil Spring

5.4 DEFLECTIONS OF STATICALLY DETERMINATE STRUCTURES 175

The semicircular curved beam of radius R in Figure E5.13 has a circular cross section of radius 7. The
curved beam is indicated by its centroidal axis to simplify the figure. It is fixed at O and lies in the
(x, ) plane with center of curvature at C on the x axis. Load P parallel to the z axis acts at a section
7/2 from the fixed end. Determine the z component of the deflection of the free end. Assume that R/r
is sufficiently large for Us to be negligible.

FIGURE E5.13

To find the z component of the deflection of the free end of the curved beam, a dummy unit load par-
allel to the z axis is applied at B as indicated in Figure ES5.13. Consider a section D of the curved
beam at an angle 6 measured from section A at the load P. The internal moment and torque at section
D resulting from forces at A and B are

My, = P(AF) = PRsin@

T, = P(DF) = PR(1 - cos6)
mh = 1O(BE) = Rcos@
fr = 1.0(DC + CE) = R(1 + sin6)

These values are substituted into Eqs. 5.20a and 5.20b to give

™2 PRsinO(Rcos6) . PR(1 — cosO)[R(1 + sin8)]
9B j +

Rd6
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A coil spring is formed by winding a wire (or circular rod) of diameter d into a helix with diameter D,
number of coils 7, and pitch angle B (see Figure E5.144 in which n = 3). Assume that the material has
modulus of elasticity E and shear modulus G. Determine the stiffness of the spring under a concentric
axial load P. Ignore end effects; that is, ignore the method by which the axial load is applied to the
ends of the spring. Assume that the ratio d/D is small enough that the equations for bending and tor-
sion of straight members (Chapter 1) apply.
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Solution

— ) ——|

(a) (b)

FIGURE E5.14

Even though the force P acts at the location and in the direction of interest, we use the dummy unit
load method to find deflection of the spring. The concentric axial load P causes a shear force V and a
normal force N that act on the cross section of the wire. The effect of these internal forces is expected
to be small and we dismiss them from consideration here.

The load P has a lever arm of D/2 relative to the centroidal axis of the wire. Hence it produces a
moment of magnitude PD/2. The components of this moment relative to the cross-sectional plane of
the wire are a bending moment M and a torque T (see the enlarged view of a portion of the top coil in
Figure 5.14b) given by
_ PDsinf
T2
PD cosf8 @)

2

M
T =

If end effects are ignored, M and T are each constant over the full length of the spring.
The corresponding moment and torque in the spring caused by a concentric unit axial load on the
spring are
D sinf
m = ———=r
2
_ Dcosf
2

(b)
t

Substitution of Egs. (a) and (b) into Eq. 5.20a gives

L
- J‘ PDzsinz,B + Pchoszﬁ ds
? 4ET aGT
The differential ds is an element of arc length of the wire. The limit of integration L is the total length
of wire in the spring, which is approximated as L = nzD. Since all quantities are constant with respect
to s, the integration is trivial. Hence, the axial deflection of the spring is

3.2 2
_ hmPD” | sin ﬁ+cos Ji] ©
4 El GJ

The spring stiffness £ is found by dividing the axial load P by the deflection ¢ from Eq. (c). After
substitution for A, 1, and J in terms of d, this results in

4
‘- EGd

8nD3(2G sin2ﬁ +E coszﬂ)
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The relative effects of the bending and torsional moments on the stiffness of the spring can now be
examined. For instance, in a closely wound spring the pitch angle 8 is small and the effect of bending
moment M is small. For this case, sin’$ = 0, cos’f = 1, and only the torque T contributes to strain
energy in the spring. Hence, the stiffness is given by

Gd*

kp =
8nD3

5.5 STATICALLY INDETERMINATE STRUCTURES

As we observed in Section 5.4, a statically determinate structure (Figure 5.8) may be made
statically indeterminate by the addition of a member (member BD in Figure 5.9). Alterna-
tively, a statically indeterminate structure may be rendered statically determinate if certain
members, internal actions, or supports are removed. For example, the truss in Figure 5.9 is
rendered statically determinate if member BD (or equally well member AC) is removed.
Such a member in a statically indeterminate structure is said to be redundant, since after
its removal the structure will remain in static equilibrium under arbitrary loads. In general,
statically indeterminate structures contain one or more redundant members or supports.
For simplicity a redundant member or redundant support is often referred to only as a
redundant, without additional qualification.

Generally in the analysis of structures, internal actions in each member of the struc-
ture must be determined. For statically indeterminate structures, the equations of static
equilibrium are not sufficient to determine these internal actions. For example, in Figure
5.11a, the propped cantilever beam has four unknown support reactions, whereas there are
only three equations of equilibrium for a planar structure. If the support at B were
removed, the beam would function as a simple cantilever beam. Hence, we may consider
the support at B to be redundant and, if it is removed, the beam is rendered statically deter-
minate. The choice of the redundant is arbitrary.

If we consider the support at B to be redundant, additional information is required to
determine the magnitude of the reaction R (see Figure 5.11¢). As we shall see, the fact that

{{{}iirii}@%}] ¥_F+++ir+++}§#|
A —T3 8 A Tn
(a) (c) R

(h) (d)

FIGURE 5.11 Structures with redundant supports.
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the support at B prevents the tip of the beam from displacing vertically may be used, in
conjunction with Castigliano’s theorem on deflections, to obtain the additional equation
needed to determine the redundant reaction R.

Likewise, the three support reactions at A (or F) for member ABCDE in Figure 5.11b
can be chosen as the redundants. Hence, either the support at A or E (but not both) may be
removed to render the structure statically determinate. Let us assume that the support reac-
tions at £ are chosen as the redundants (Figure 5.11d). The three redundant reactions are a
vertical force Vi, which prevents vertical deflection at E; a bending moment M, which pre-
vents bending rotation of the section at E; and a torque Tg, which prevents torsional rotation
of the section at E. The fact that vertical deflection, bending rotation, and torsional rotation
are prevented at section E may be used, in conjunction with Castigliano’s theorem on deflec-
tions, to obtain the additional equations needed to determine the support reactions at E.

The structures in Figure 5.12 do not contain redundant reactions but do contain redundant
members. In Figure 5.124, the member BE (or CD) of the truss is redundant. Hence, the truss is
statically indeterminate. If either member BE or member CD is removed, the truss is rendered
statically determinate. Likewise, the member ABC of the statically indeterminate structure in Fig-
ure 5.12b is redundant. It may be removed to render the structure statically determinate.

Since the truss of Figure 5.124 is pin-joined, the redundant member BE is subject to
an internal axial force. Hence, the only redundant internal force for the truss is the tension
in member BE (Figure 5.12¢). However, the redundant member ABC of the structure in
Figure 5.12d may support three internal reactions: the axial force N, shear V, and moment
M. The additional equations (in addition to the equations of static equilibrium) required to
determine the additional unknowns (the redundant internal actions caused by redundant
members) in statically indeterminant structures may be obtained by the application of Cas-
tigliano’s theorem on defiections.

In particular, we can show that

W _ (5.21)

(a) (c)

(b) (d)

FIGURE 5.12 Structures with redundant members.
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for every internal redundant force or external redundant reaction (Fy, F,, ...) in the struc-
ture, and

U

Wi =0 (5.22)
for every internal redundant moment or external redundant moment (M,, M,, ...) in the
structure. Equations 5.21 and 5.22 are readily verified for the structures in Figure 5.11.
The beam in Figure 5.11a has a redundant external reaction R at B. Since the deflection at
point B is zero, Eq. 5.17 gives g = dU/dR = 0, which agrees with Eq. 5.21. The structure
in Figure 5.11b has three internal redundant reactions (Vg, Mg, Tg) at section E, as indi-
cated in Figure 5.11d. Since the deflection and rotations at E remain zero as the structure is
loaded, Egs. 5.17 and 5.18 yield the results dU/dVy = dU/dM, = dU/JT = 0, which agree
with Egs. 5.21 and 5.22.

It is not directly apparent that Egs. 5.21 and 5.22 are valid for the internal redundant
member forces in the structures in Figure 5.12. To show that they are valid, let Nz be the
redundant internal action for the pin-joined truss (Figure 5.12g). Pass a section through
some point H of member BE and apply equal and opposite tensions Ngp and Ngg, as
indicated in Figure 5.12¢. Since the component of the deflection of point H along member
BE is not zero, it is not obvious that

U
=0
dNg @

To prove that Eq. (a) is valid, it is necessary to distinguish between tensions Npp and Ngg.
The displacement of point H in the direction of Np is given by (see Eq. 5.17)

U
N, = 55— (b)
BE aNBE
and in the direction of Ngf, the displacement is given by

U (©)

These displacements ¢y;, and gy are collinear, have equal magnitudes, but have opposite
senses. Hence, by Egs. (b) and (c) we have

WU, Y @
dNgp  INgg
The reduction of Eq. (d) to Eq. (a) then follows by the same technique employed in the

reduction of Eq. (a) of Section 5.2 to Eq. (d) of Section 5.2, since Ny = Ngp=Npg. In a
similar manner, it may be shown for the structure in Figure 5.12b that

U U oUu
= = — =0, == 5.23
w- " w= " wm° 629

where N, V, and M are the internal member forces for any given section of member ABC.

Note: Inthe application of Egs. 5.21 and 5.22 to the system with redundant supports or
redundant members, it is assumed that the unloaded system is stress-free (see Figure 5.11).
Consequently, redundant supports exert no force on the structure initially. However, in certain
applications, these conditions do not hold. For example, consider the beam in Figure 5.13.
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EXAMPLE 5.15

Uniformly
Loaded Propped
Cantilever Beam

O -
@ 9
(a) Unloaded (c) Loaded R
i
_‘\.J__,I;
45
(b) Unloaded (d) Loaded R

FIGURE 5.13 Effect of support settlement or thermal expansion or contraction on redundant
supports of loaded beams. (a), (b) Unloaded. (¢}, (d) Loaded.

Initially, the right end of the beam may be lifted off the support, or the end support may
exert a force on the beam because of either support settlement or thermal expansion or
contraction. As a result, the end of the beam (in the absence of the redundant support) may
be raised a distance g; above the location of the support before the beam is loaded (Figure
5.13a) or it may be a distance g, below the support location (Figure 5.135).

If the displacement magnitudes g, or ¢, of the end of the beam (in the absence of the
support) are known, we may compute the reaction R for the loaded beam (Figures 5.13¢
and d) by the relations

U U
n=-% o g=% (5.24)

where the minus sign indicates that displacement g, and force R have opposite senses.

5.5.1 Deflections of Statically Indeterminate
Structures

A structure is not altered if we remove the redundant members or redundant supports and
replace them by external forces and moments that are identical to the forces and moments
exerted by the deleted parts. These forces and moments are initially unknown, but we may
denote them by Ry, R,, .... Then we may derive formulas for the displacements and rota-
tions of the various parts of the simplified statically determinate structure that carries the
prescribed loading and the statically indeterminate reactions R;, R,, .... By setting the
deflections at the redundant supports to known values, we obtain equations that determine
R;. R,, .... The procedure is illustrated in the following examples.

Consider the reaction R at the right end of the beam shown in Figure ES5.15a as the redundant.
The right-hand support is conceived to be removed, and the external force R is applied (Figure
E5.15b).

(a) Determine the reaction R, enforcing the condition that g5 = 0.

(b) Determine the midspan displacement of the beam.
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(a) (b)

FIGURE E5.15

Solution | (a) A free-body diagram of the beam is shown in Figure E5.15b. The bending moment in the beam at
section x is

M = Rx—- %wxz

Let us use the dummy unit load method. Hence, we apply a 1-N load at the free end of the beam
(Figure E5.15¢). The moment at section x caused by this load is
m=x

Neglecting the effect of shear, we have, by Eq. 5.20a,

L L
Mm 1 2 1 3
qR = Ei_dx = E_'IJ.(RX _wa )dx
0 0
or
_RL _wi!
9r = 3F7 T REI

Since R is the reaction of the fixed support, g = 0. Therefore,

R = ng
(b) To determine the midspan deflection of the beam, apply a (downward) unit load atx = L. /2 (Figure
E5.15d).
3 1 2
M = “wLx—-wx
for0<x< %, 8 2
m=0
M= éwLx— lwx2
L_ . L 8 2
for 3% x<L, I

m=z-x
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Hence, by Eq. 5.20a,

L
_ 1 3 1. 2YL
a7 = 7 “- (ngx—wa )(E—x)dx
L/2

Integration yields
0= WL
L2 ™ 192E1

EXAMPLE 5.16 | Determine the reactions at C for member ABC in Figure E5.164 and the deflection of point B in the
Statically | direction of P. Assume Uy, and Uy are so small that they can be neglected.
Indeterminate

System P
2R

(a) (b)

FIGURE E5.16

Solution | The support at C allows rotation but prevents displacements. Our first problem is to determine the
redundant reactions Q and H (Figure E5.16b) at C. Since the y displacement at C is zero, Eq. 5.21 gives
n .
% =0-= l[QRS‘“a";f(l = 05O} R (sin6) RdO

2R
[(Q—P)s+2HR] ;4
+ e . 5das
fue-ry

or
T 8 8P _
Q(§+§)+2H—-—3— =0 @

Since the z displacement at C is zero, Eq. 5.21 gives

n
U _ , _ {IQRsin8—HR(1—cosO)] . , .
=0 —£ = [-R(1 - cos6)] RdO

. Zf[(Q —P)s+2HR] 2R ds
: El

or

2Q+H(3_2’_’+8)_4P =0 ®)

Simultaneous solution of Egs. (a) and (b) gives



EXAMPLE 5.17
Statically
Indeterminate
Truss
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@ = 0.5193P
H = 0.2329P

In the application of Castigliano’s theorem, the quantities H, Q, and P are considered to be inde-
pendent. Then since the moment in the curved part BC [namely, OR sin 86— HR(1 - cos 6)] is indepen-
dent of P, we need only consider the strain energy of part AB. Thus, with Eq. (c), we obtain

dp

2R
_dU _ [(Q—P)s+2HR]
TP £ _T(_s) ds

©

_ 18,3 8 .3 3
- ETI(§PR -30R —4HR)

or

3
_ PR

Alternatively, we may consider A and Q to be functions of P. Then, by the chain rule, with
U =UIP, H(P), Q(P)],
- 9UILP, H(P), Q(P)]
P oP
_ U UM UK @
oP JH JP JQ JP

However, the boundary conditions at C require that JU/dH = 0 and dU/dQ = 0. Equation (d) is simpli-
fied accordingly, and we again obtain Eq. (c).

Notice that the above argument is applicable to indeterminate structures in general. That is, the
boundary condition requirement that dU/dH = 0 and dU/dQ = 0 can be used to simplify the expres-
sion for strain energy in the structure. Only the strain energy in the released structure resulting from
the applied load needs to be considered.

The inverted king post truss in Figure E5.17 is constructed of a 160-mm-deep by 60-mm-wide rectan-
gular steel beam ABC (E - = 200 GPa and Y, = 240 MPa), a 15-mm diameter steel rod ADC (Ep- =
200 GPa and Yp = 500 MPa), and a 40 mm by 40 mm white oak compression strut BD (Epp, =
12.4 GPa and Y, = 29.6 MPa). Determine the magnitude of the load P that can be applied to the king
post truss if all parts are designed using a factor of safety SF = 2.00 against yielding. Neglect stress
concentrations.

[—2m — 2m

jrd_ |1f~|\ _.Q‘FE

FIGURE E5.17
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Solution | Let member BD be the redundant member of the king post truss. We will include strain energy Uy for
both strut BD and rod ADC; however, Uy and Ug for the beam are so small compared to Uy, that they
can be neglected. Let the compression load in strut BD be Ngp,. Equations of equilibrium at joint D
give

Npe = 425N,

The bending moment in the beam at distance s from either Cor A is

P NBD)
M=]w-_—=
(2 2 )
Equation (5.21) gives
U  _ 0= Ngplgp +2NDCLDC dNpc
INgp EppApp  EpcApc MNpp
LBC
+2 j M aM ds
o EACIAC aNBD
_ 500Nz, | 2(/A.25 % 10°)(4.25)Np,,
EgpApp EpcApc

P _Npp)
20001 2 2

+2 __(_E)ds

which can be simplified to give

500 3Eacluc, 4.25(8.5x 10%) 3Eacl ¢

€]
EppApp 4x10° Epclpc  4x10°

P = Npp|1+

But Agp, = 40(40) = 1600 mm?, Apc = 7 (15)%/4 = 176.7 mm?, and

Ic = 60(160)°/12 = 20.48 x 10°mm”

These along with other given values when substituted in Eq. (a) give
P = 2.601Ng,

The axial loads in strut BD and rod ADC and the maximum moment in beam ABC can now be written as
functions of P,

Ngp = 0.384P [N]
Npc = 0.793P [N]
M, = 616P [N« mm]
Since the working stress for each member is half the yield stress for the member, a limiting value of P is
obtained for each member. For compression strut BD

Ypp _ 296 _ Npp _ 0.384P

2 2 A, 1600
P = 61,700N




EXAMPLE 5.18
Spring-
Supported
I-Beam

Solution
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For rod ADC
2 2 Ap. 1167
P = 55700 N
For beam ABC
Yic _ 240 _ M€ 616P(80)
22 Iy a048x10°
P = 49,900 N

Thus, the design load for the king post truss is 49.9 kN.

An aluminum alloy I-beam (depth = 100 mm, [ = 2.45 X 10° mm*, and E = 72.0 GPa) has a length of
6.8 m and is supported by seven springs (K = 110 N/mm) spaced at distance / = 1.10 m center to center
along the beam (Figure E5.18a). A load P = 12.0 kN is applied at the center of the beam over the center
spring. Determine the load carried by each spring, the deflection of the beam under the load, the maxi-
mum bending moment, and the maximum bending stress in the beam.

P=12.0kN
LA e S B A
| -
I § 3§ § § § 3

P=12.0 kN

| «

1

It is assumed that the springs are attached to the beam so that the springs can develop tensile as well
as compressive forces. Because of symmetry, there are only four unknown spring forces: A, B, C, and
D. A free-body diagram of the beam with springs attached is shown in Figure ES5.18b. Let the loads B,
C, and D carried by the springs be redundant reactions. The magnitudes of these reactions are
obtained using Eq. 5.21 as

f ¥ ¥ § 3 :
Wb e b e 2

(h)

FIGURE E5.18

W _o U_p Y. @
- > x> >d7°

The strain energy U for the beam and springs (if we neglect Uy for the beam) is given by the relation

2 21 2 3/ 2
M M M
=2 M o M g [ My
v T T !2E1 e 5[251 ?

2 2 2 9
+2 A—+B_+C_ +D
2K 2K 2K) 2K

ey

(b)



186

CHAPTERS5 APPLICATIONS OF ENERGY METHODS

The moments in the three integrals are functions of the reaction A, which can be eliminated from Eq. (b)
by the equilibrium force equation for the y direction:

P D
A=L_pB_c-Y
5 C 3 (c)

The moments for the three segments of the beam are

0<zg1
M = Az =§z—Bz—Cz-—§z
1£2<21
M = Az+B(z-1) =P, Bi-c:-D; @
2 2
201<z<31

M = Az+B(z-1)+C(z-2]) = ’Zfz—Bl—zcl-%)z

Substitution of Egs. (b)}—(d) into the first of Egs. (a) gives

U _,_ 2 (P D
% i g(zz Bz~ Cz—Ez)(—z) dz
2% D
E!( z-Bl- CZ—EZ)(—l)dZ
2 T P D
+ 2 (-—z _BI-2CI- -—z)(—l) dz
EI)\2 2

2(P D 2B
2(P_p_c_ D\ 1y+28
+K(2 ¢ 2)( D+%

which can be simplified to give
0 = 12BEI + 6CEI + 3DEI - 3PEI - 13PK[® + 14BKP® + 23CKP® + 13DKP ©
Substitution of Egs. (b)—(d) into the second and third of Egs. (a) gives, after simplification,
0 = 6BEI + 12CEI + 3DEI - 3PEI - 23PK[® + 23BKP® + 40CKP® + 23DKP® ®
0 = 6BEI + 6CEI + 9DEI — 3PEI - 27PKP® + 26BKP + 46CKP + 271DKPP ®)

Equations (e)«(g) are three simultaneous equations in the three unknowns, B, C, and D. Their magni-
tudes depend on the magnitudes of E, /, and K. Using the values specified in the problem, we have

0=B +1.0622C + 0.5838D — 0.5838P
0 =B+ 1.8015C + 0.8804D — 0.8804P (h)
. 0=B + 1.6019C + 1.1389D — 0.9213P
The solution of Egs. (h) and (c) is
=-0.0379P =455 N
B=0.1014P=1217N
C=0.2578P =3094 N
D =0.3573P =4288 N

The maximum deflection of the beam is the deflection under the load P, which is equal to the
deflection of the spring at D:
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